V = 1423.7 (3) Å³

Mo $K\alpha$ radiation $\mu = 1.07 \text{ mm}^{-3}$

 $0.60 \times 0.60 \times 0.20 \text{ mm}$

5903 reflections with $I > 2\sigma(I)$

every 247 reflections

intensity decay: none

T = 173 (2) K

 $R_{\rm int} = 0.023$ 3 standard reflections

Z = 2

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hexaaguazinc(II) D-camphor-10-sulfonate

Manuela Schepke, Frank T. Edelmann* and Steffen Blaurock

Chemisches Institut der Otto-von-Guericke-Universität, Universitätsplatz 2, D-39116 Magdeburg, Germany

Correspondence e-mail: frank.edelmann@vst.uni-magdeburg.de

Received 29 June 2007; accepted 30 June 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.087; data-to-parameter ratio = 22.0.

The structure of the title compound, $[Zn(H_2O)_6]$ - $(C_{10}H_{15}O_4S)_2$, consists of two D-camphor-10-sulfonate anions, together with essentially regular octahedral $[Zn(H_2O)_6]^{2+}$ cations. The coordinated water molecules around the zinc ion are engaged in an extensive network of hydrogen bonds with the O atoms of the sulfonate groups. Distances between hydrogen-bonded O atoms are in the range 2.704 (4)-2.845 (4) Å. The title compound and its nickel and copper analogues are isomorphous.

Related literature

For related literature, see: Couldwell et al. (1978); Henderson & Nicholson (1995); Sheldrick (1990).

Experimental

Crystal data

[Zn(H₂O)₆](C₁₀H₁₅O₄S)₂ $M_r = 636.03$ Monoclinic, P2 a = 11.7293 (14) Åb = 7.0854 (8) Å c = 17.169 (2) Å $\beta = 93.841 (10)^{\circ}$

Data collection

Siemens P4 diffractometer Absorption correction: multi-scan (XEMP; Siemens, 1994) $T_{\min} = 0.565, T_{\max} = 0.814$ 7590 measured reflections 7364 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.087$	$\Delta \rho_{\rm max} = 0.51 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.97	$\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$
7364 reflections	Absolute structure: Flack (1983),
334 parameters	with 3392 Friedel pairs
1 restraint	Flack parameter: -0.005 (10)

Data collection: XSCANS (Fait, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Siemens, 1995); software used to prepare material for publication: SHELXTL-Plus.

The authors thank the Otto-von-Guericke-Universität for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2423).

References

- Couldwell, C., Prout, K., Robey, D., Taylor, R. & Rossotti, F. J. C. (1978). Acta Cryst. B34, 1491-1499.
- Fait, J. (1991). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Henderson, W. & Nicholson, B. K. (1995). Acta Cryst. C51, 37-40.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany.
- Siemens (1994). XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1995). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m2071 [doi:10.1107/S1600536807031984]

Hexaaquazinc(II) D-camphor-10-sulfonate

M. Schepke, F. T. Edelmann and S. Blaurock

Comment

The title compound was prepared as part of an ongoing research project to develop new materials for the zinc-catalyzed production of polycarbonates from CO_2 and epoxides (ethylene oxide, propylene oxide *etc.*). Two analogous metal salts of *D*-camphor-10-sulfonic acid have been structurally characterized previously (copper: Couldwell *et al.*, 1978; nickel: Henderson & Nicholson, 1995). Here we present the crystal structure of $[Zn(H_2O)_6]$.

The three metal salts of D-camphor-10 sulfonic acid are isomorphous. The lattice of the title compound consists of $[Zn(H_2O)_6]$ cations and two crystallographically independent *D*-camphor-sulfonate anions. The cation is essentially octahedral, with Zn—O distances ranging from 2.048 (2) to 2.099 (2) Å and O—Zn—O angles between 82.99 (11) and 96.47 (6)°. No coordination of either the sulfonate or the ketone O atoms of the anions is observed.

The two independent D-camphor-10 sulfonate anions show only small differences in bond parameters. As in the lattices of the related nickel and copper compounds, the water sphere and the O atoms of the sulfonate groups are involved in a complex hydrogen bonding network. In contrast to the structure of the nickel complex, in which all H atoms were reported to take part in hydrogen bonds, we find that two water H atoms (H01 & H03) of the title compound do not form hydrogen bonds. This may be associated with the difficulty in localizing H atoms in pseudosymmetric structures, a problem that surprisingly was not mentioned in the earlier reports (see X-ray details).

Experimental

The title compound was prepared by saturating a hot aqueous solution of *D*-camphor-10-sulfonic acid with zinc oxide, followed by filtration and slow evaporation at ambient temperature.

Refinement

All H atoms were refined with a riding model with O—H = 0.84 Å, C—H ranging from 0.98–1.00Å and U(H) = 1.2 $U_{eq}(C,O)$ or U(H) = 1.5 $U_{eq}(C_{methyl})$. It is probable that X-ray data alone cannot provide unambiguous positions for all H.

Figures

Fig. 1. The molecule of the title compound in the crystal. Thermal ellipsoids represent 50% probability levels. H-Atom radii are arbitrary. Fig. 2. The hydrogen-bond network.

Hexaaquazinc(II) D-camphor-10-sulfonate

Crystal data	
[Zn(H ₂ O) ₆](C ₁₀ H ₁₅ O ₄ S) ₂	$F_{000} = 672$
$M_r = 636.03$	$D_{\rm x} = 1.484 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: P2yb	Cell parameters from 66 reflections
<i>a</i> = 11.7293 (14) Å	$\theta = 3 - 12.5^{\circ}$
b = 7.0854 (8) Å	$\mu = 1.07 \text{ mm}^{-1}$
c = 17.169 (2) Å	T = 173 (2) K
$\beta = 93.841 \ (10)^{\circ}$	Plate, colourless
$V = 1423.7 (3) \text{ Å}^3$	$0.60 \times 0.60 \times 0.20 \text{ mm}$
Z = 2	

Data collection

diffractometer	$R_{\rm int} = 0.023$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 28.8^{\circ}$
Monochromator: graphite	$\theta_{\min} = 3.0^{\circ}$
T = 173(2) K	$h = -15 \rightarrow 15$
ω scans	$k = -9 \rightarrow 9$
Absorption correction: empirical (using intensity measurements) (Siemens, 1994)	$l = 0 \rightarrow 22$
$T_{\min} = 0.565, \ T_{\max} = 0.814$	3 standard reflections
7590 measured reflections	every 247 reflections
7364 independent reflections	intensity decay: none
5903 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2

Hydrogen site location: inferred from neighbouring sites

Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0537P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.087$	$(\Delta/\sigma)_{\text{max}} = 0.005$
<i>S</i> = 0.97	$\Delta \rho_{max} = 0.51 \text{ e} \text{ Å}^{-3}$
7364 reflections	$\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$
334 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 3392 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.005 (10)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
Zn	0.24152 (2)	0.23602 (6)	0.494431 (14)	0.01905 (7)
011	0.35940 (15)	0.2373 (4)	0.58803 (11)	0.0380 (4)
H01	0.4241	0.2623	0.5725	0.046*
H02	0.3635	0.1211	0.5973	0.046*
O12	0.12659 (17)	0.2322 (4)	0.39833 (12)	0.0437 (5)
H03	0.0773	0.1569	0.4132	0.052*
H04	0.0907	0.3348	0.3941	0.052*
O13	0.1539 (2)	0.4604 (3)	0.54210 (15)	0.0260 (5)
H05	0.0868	0.4420	0.5548	0.031*
H06	0.1535	0.5749	0.5296	0.031*
O14	0.32956 (19)	0.0144 (3)	0.44599 (15)	0.0263 (6)
H07	0.3961	0.0090	0.4308	0.032*
H08	0.3149	-0.0984	0.4564	0.032*
O15	0.1528 (2)	0.0204 (3)	0.54855 (15)	0.0265 (5)
H09	0.1738	-0.0927	0.5527	0.032*
H10	0.0843	0.0168	0.5597	0.032*
O16	0.3304 (2)	0.4525 (3)	0.44272 (16)	0.0316 (6)
H11	0.3119	0.5651	0.4333	0.038*
H12	0.3971	0.4458	0.4281	0.038*
S	-0.08148 (4)	0.23795 (13)	0.66721 (3)	0.01718 (10)
01	-0.0216 (2)	0.0609 (3)	0.65366 (14)	0.0227 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

O2	-0.01836 (19)	0.4015 (3)	0.64225 (14)	0.0237 (5)
O3	-0.19981 (12)	0.2363 (4)	0.63493 (9)	0.0248 (3)
C1	0.00787 (17)	0.2248 (5)	0.82661 (12)	0.0186 (4)
C2	-0.0241 (2)	0.2782 (4)	0.90868 (15)	0.0279 (7)
C3	0.0859 (2)	0.2888 (5)	0.96047 (16)	0.0353 (8)
H3A	0.0855	0.1982	1.0044	0.042*
H3B	0.0994	0.4177	0.9814	0.042*
C4	0.17475 (19)	0.2344 (6)	0.90275 (13)	0.0268 (5)
H4	0.2548	0.2727	0.9193	0.032*
C5	0.1589 (2)	0.0215 (4)	0.88764 (16)	0.0280 (6)
H5A	0.1549	-0.0490	0.9372	0.034*
H5B	0.2219	-0.0302	0.8585	0.034*
C6	0.0428 (2)	0.0126 (4)	0.83773 (16)	0.0226 (5)
H6A	-0.0152	-0.0576	0.8655	0.027*
H6B	0.0522	-0.0489	0.7868	0.027*
C7	0.1269 (2)	0.3230 (4)	0.82407 (15)	0.0203 (5)
C8	0.1166 (3)	0.5399 (4)	0.8263 (2)	0.0358 (7)
H8A	0.1923	0.5953	0.8383	0.043*
H8B	0.0655	0.5766	0.8665	0.043*
H8C	0.0855	0.5857	0.7753	0.043*
С9	0.1999 (2)	0.2681 (4)	0.75685 (14)	0.0260 (7)
H9A	0.2798	0.3017	0.7704	0.031*
H9B	0.1725	0.3356	0.7094	0.031*
Н9С	0.1940	0.1318	0.7478	0.031*
O4	-0.11982 (18)	0.3062 (4)	0.92834 (12)	0.0454 (6)
C10	-0.09305 (19)	0.2637 (4)	0.76947 (13)	0.0199 (6)
H11A	-0.1178	0.3950	0.7786	0.024*
H11B	-0.1561	0.1804	0.7839	0.024*
S'	0.40990 (4)	-0.26391 (13)	0.65060 (3)	0.01825 (10)
O1'	0.4675 (2)	-0.4357 (3)	0.62698 (15)	0.0253 (5)
O2'	0.46865 (19)	-0.0944 (3)	0.62639 (15)	0.0234 (5)
O3'	0.28824 (12)	-0.2646 (4)	0.62623 (9)	0.0255 (3)
C1'	0.53121 (17)	-0.2603 (5)	0.79946 (12)	0.0202 (4)
C2'	0.5312 (3)	-0.3858 (4)	0.87247 (17)	0.0281 (6)
C3'	0.6312 (3)	-0.3214 (4)	0.92760 (18)	0.0368 (8)
H3'1	0.6872	-0.4244	0.9381	0.044*
H3'2	0.6048	-0.2750	0.9777	0.044*
C4'	0.6823 (2)	-0.1597 (4)	0.88023 (16)	0.0271 (6)
H4'	0.7314	-0.0691	0.9121	0.033*
C5'	0.74126 (19)	-0.2540 (6)	0.81366 (15)	0.0301 (5)
H5'1	0.7911	-0.3587	0.8333	0.036*
H5'2	0.7876	-0.1618	0.7861	0.036*
C6'	0.6400 (2)	-0.3285 (4)	0.75948 (16)	0.0245 (6)
H6'1	0.6419	-0.4679	0.7560	0.029*
H6'2	0.6421	-0.2750	0.7063	0.029*
C7'	0.5732 (2)	-0.0704 (4)	0.83839 (15)	0.0218 (5)
C8'	0.4922 (3)	0.0105 (5)	0.8950 (2)	0.0334 (8)
H8'1	0.4646	-0.0911	0.9276	0.040*
H8'2	0.4271	0.0699	0.8658	0.040*

H8'3	0.5324	0.1049	0.9283	0.040*
C9'	0.6006 (2)	0.0861 (4)	0.78097 (17)	0.0288 (6)
H9'1	0.5295	0.1317	0.7541	0.035*
H9'2	0.6509	0.0361	0.7425	0.035*
H9'3	0.6389	0.1905	0.8095	0.035*
O4'	0.4641 (2)	-0.5084 (3)	0.88454 (15)	0.0405 (6)
C10'	0.41553 (17)	-0.2650 (6)	0.75433 (12)	0.0228 (4)
H11C	0.3713	-0.1549	0.7711	0.027*
H11D	0.3751	-0.3795	0.7707	0.027*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.01953 (12)	0.01708 (11)	0.02041 (12)	-0.00012 (19)	0.00036 (9)	0.0005 (2)
O11	0.0426 (10)	0.0213 (8)	0.0473 (11)	0.0010 (15)	-0.0189 (8)	0.0040 (15)
O12	0.0539 (11)	0.0211 (9)	0.0518 (11)	-0.0047 (15)	-0.0287 (9)	0.0055 (16)
O13	0.0290 (13)	0.0186 (12)	0.0311 (13)	-0.0012 (10)	0.0072 (11)	-0.0011 (10)
O14	0.0218 (13)	0.0234 (12)	0.0346 (15)	0.0021 (10)	0.0082 (11)	-0.0007 (11)
O15	0.0228 (12)	0.0240 (13)	0.0340 (14)	-0.0006 (10)	0.0104 (10)	0.0037 (10)
O16	0.0298 (14)	0.0245 (13)	0.0416 (17)	0.0063 (11)	0.0107 (12)	0.0131 (12)
S	0.0163 (2)	0.0165 (2)	0.0185 (2)	0.0004 (4)	-0.00026 (17)	-0.0013 (4)
01	0.0243 (12)	0.0192 (11)	0.0241 (11)	0.0017 (9)	-0.0010 (9)	-0.0046 (8)
02	0.0225 (12)	0.0206 (11)	0.0281 (12)	-0.0026 (9)	0.0027 (9)	0.0058 (9)
O3	0.0186 (7)	0.0275 (8)	0.0273 (8)	-0.0018 (13)	-0.0051 (6)	0.0003 (13)
C1	0.0178 (9)	0.0216 (12)	0.0163 (9)	0.0030 (14)	0.0007 (7)	0.0024 (14)
C2	0.0317 (13)	0.0301 (18)	0.0220 (12)	0.0004 (10)	0.0032 (10)	-0.0047 (10)
C3	0.0382 (16)	0.047 (2)	0.0205 (13)	-0.0005 (12)	-0.0004 (11)	-0.0061 (11)
C4	0.0231 (10)	0.0327 (12)	0.0238 (10)	-0.0050 (19)	-0.0048 (8)	0.0032 (19)
C5	0.0281 (14)	0.0294 (15)	0.0258 (14)	0.0030 (11)	-0.0045 (11)	0.0048 (11)
C6	0.0255 (13)	0.0179 (12)	0.0244 (13)	-0.0023 (10)	0.0007 (10)	0.0045 (10)
C7	0.0160 (11)	0.0205 (12)	0.0240 (13)	-0.0019 (9)	-0.0008 (10)	-0.0005 (10)
C8	0.0377 (17)	0.0240 (15)	0.0445 (18)	-0.0064 (13)	-0.0055 (14)	-0.0038 (13)
C9	0.0216 (11)	0.033 (2)	0.0238 (11)	-0.0013 (11)	0.0026 (9)	0.0045 (11)
O4	0.0312 (11)	0.0763 (18)	0.0298 (11)	0.0040 (11)	0.0112 (9)	-0.0116 (10)
C10	0.0163 (9)	0.0250 (17)	0.0184 (10)	0.0023 (10)	0.0013 (8)	-0.0009 (10)
S'	0.0153 (2)	0.0172 (2)	0.0220 (2)	-0.0003 (4)	-0.00066 (18)	0.0007 (4)
O1'	0.0248 (13)	0.0203 (12)	0.0303 (13)	-0.0014 (10)	-0.0029 (11)	-0.0057 (10)
O2'	0.0178 (12)	0.0217 (11)	0.0310 (13)	-0.0031 (9)	0.0034 (10)	0.0036 (10)
O3'	0.0167 (7)	0.0271 (8)	0.0319 (8)	-0.0018 (12)	-0.0040 (6)	-0.0023 (14)
C1'	0.0187 (9)	0.0208 (10)	0.0211 (9)	-0.0035 (16)	0.0008 (8)	0.0005 (17)
C2'	0.0327 (15)	0.0248 (14)	0.0263 (14)	-0.0019 (12)	-0.0011 (12)	0.0016 (11)
C3'	0.0413 (17)	0.0409 (18)	0.0265 (14)	-0.0017 (13)	-0.0091 (13)	0.0050 (11)
C4'	0.0248 (13)	0.0277 (15)	0.0278 (14)	-0.0003 (11)	-0.0062 (11)	-0.0025 (11)
C5'	0.0202 (10)	0.0333 (14)	0.0360 (12)	0.0044 (17)	-0.0044 (9)	-0.0015 (19)
C6'	0.0180 (12)	0.0269 (13)	0.0284 (13)	0.0027 (9)	-0.0003 (11)	-0.0052 (10)
C7'	0.0182 (12)	0.0244 (14)	0.0231 (13)	-0.0024 (10)	0.0029 (10)	-0.0052 (10)
C8'	0.0277 (15)	0.0366 (17)	0.0367 (18)	-0.0037 (13)	0.0086 (14)	-0.0138 (14)
C9'	0.0255 (14)	0.0249 (14)	0.0358 (16)	-0.0052 (11)	0.0012 (12)	-0.0010 (12)

O4'	0.0471 (15)	0.0360 (13)	0.0381 (14)	-0.0126 (11)	-0.0002 (11)	0.0105 (10)
C10'	0.0178 (9)	0.0294 (11)	0.0215 (10)	-0.0022 (17)	0.0032 (8)	-0.0002 (18)
Geometric param	neters (Å, °)					
Zn—O11		2.0485 (17)	С7—(C8	1.54	3 (4)
Zn—O12		2.0597 (17)	C8—I	H8A	0.98	00
Zn—O14		2.083 (2)	C8—I	H8B	0.98	00
Zn—O16		2.086 (2)	C8—I	H8C	0.98	00
Zn—O13		2.090 (2)	C9—I	H9A	0.98	00
Zn—O15		2.100 (2)	C9—I	H9B	0.98	00
O11—H01		0.8405	C9—I	H9C	0.98	00
O11—H02		0.8387	C10—	-H11A	0.99	00
O12—H03		0.8394	C10—	-H11B	0.99	00
O12—H04		0.8407	S'—O	2'	1.45	9 (2)
O13—H05		0.8401	S'—O	3'	1.46	00 (14)
O13—H06		0.8394	S'—O	1'	1.46	2 (2)
O14—H07		0.8404	S'—C	10'	1.77	8 (2)
O14—H08		0.8397	C1'—	C10'	1.51	7 (3)
О15—Н09		0.8403	C1'—	C2'	1.53	7 (4)
O15—H10		0.8391	C1'—	C6'	1.56	6 (3)
O16—H11		0.8392	C1'—	C7'	1.56	7 (4)
O16—H12		0.8396	C2'—	O4'	1.20	0 (4)
S—O2		1.455 (2)	C2'—	C3'	1.52	7 (4)
S—O3		1.4596 (14)	C3'—	C4'	1.54	9 (4)
S-01		1.464 (2)	C3'—	H3'1	0.99	00
S-C10		1.779 (2)	C3'—	H3'2	0.99	00
C1-C10		1.511 (3)	C4'—	C5'	1.52	9 (4)
C1—C2		1.530 (3)	C4'—	С7'	1.55	9 (4)
C1—C7		1.563 (3)	C4'—	H4'	1.00	00
C1—C6		1.566 (4)	C5'—	C6'	1.55	1 (3)
C2—O4		1.210 (3)	C5'—	H5'1	0.99	00
C2—C3		1.519 (4)	C5'—	H5'2	0.99	00
C3—C4		1.535 (4)	C6'—	H6'1	0.99	00
С3—НЗА		0.9900	C6'—	H6'2	0.99	00
С3—Н3В		0.9900	C7'—	C8'	1.51	7 (4)
C4—C5		1.540 (5)	C7'—	C9'	1.53	2 (4)
C4—C7		1.560 (3)	C8'—	H8'1	0.98	00
C4—H4		1.0000	C8'—	H8'2	0.98	00
C5—C6		1.561 (3)	C8'—	H8'3	0.98	00
С5—Н5А		0.9900	C9'—	H9'1	0.98	00
С5—Н5В		0.9900	C9'—	H9'2	0.98	00
С6—Н6А		0.9900	C9'—	H9'3	0.98	00
С6—Н6В		0.9900	C10'-	-H11C	0.99	00
С7—С9		1.533 (3)	C10'-	-H11D	0.99	00
O11—Zn—O12		178.36 (9)	H8A-	C8H8B	109.	5
O11—Zn—O14		89.42 (10)	С7—С	С8—Н8С	109.	5
O12—Zn—O14		89.18 (11)	H8A-	C8H8C	109.	5
O11—Zn—O16		90.03 (11)	H8B-	C8H8C	109.	5

O12—Zn—O16	89.28 (11)	С7—С9—Н9А	109.5
O14—Zn—O16	96.27 (6)	С7—С9—Н9В	109.5
O11—Zn—O13	90.77 (11)	Н9А—С9—Н9В	109.5
O12—Zn—O13	90.62 (11)	С7—С9—Н9С	109.5
O14—Zn—O13	179.36 (12)	Н9А—С9—Н9С	109.5
O16—Zn—O13	83.13 (11)	Н9В—С9—Н9С	109.5
O11—Zn—O15	89.10 (11)	C1C10S	120.91 (16)
O12—Zn—O15	91.61 (11)	C1—C10—H11A	107.1
O14—Zn—O15	84.37 (11)	S-C10-H11A	107.1
O16—Zn—O15	178.92 (12)	C1C10H11B	107.1
O13—Zn—O15	96.24 (6)	S-C10-H11B	107.1
Zn—O11—H01	109.1	H11A—C10—H11B	106.8
Zn—O11—H02	99.9	O2'—S'—O3'	113.11 (15)
H01—O11—H02	103.0	O2'—S'—O1'	111.75 (9)
Zn	101.0	O3'—S'—O1'	112.23 (15)
Zn	110.8	O2'—S'—C10'	107.61 (17)
Н03—О12—Н04	103.0	O3'—S'—C10'	104.89 (9)
Zn—O13—H05	118.5	O1'—S'—C10'	106.69 (17)
Zn—O13—H06	128.9	C10'—C1'—C2'	110.8 (2)
H05—O13—H06	103.2	C10'—C1'—C6'	119.8 (2)
Zn—O14—H07	130.8	C2'—C1'—C6'	102.9 (2)
Zn	121.2	C10'—C1'—C7'	118.8 (3)
H07—O14—H08	103.3	C2'—C1'—C7'	99.55 (19)
Zn—O15—H09	125.5	C6'—C1'—C7'	102.11 (19)
Zn—O15—H10	129.3	O4'—C2'—C3'	126.5 (3)
H09—O15—H10	103.4	O4'—C2'—C1'	126.6 (3)
Zn—O16—H11	130.6	C3'—C2'—C1'	106.9 (2)
Zn—O16—H12	126.0	C2'—C3'—C4'	101.7 (2)
H11—O16—H12	103.3	C2'—C3'—H3'1	111.4
O2—S—O3	112.59 (15)	C4'—C3'—H3'1	111.4
O2—S—O1	112.13 (10)	C2'—C3'—H3'2	111.4
O3—S—O1	112.77 (16)	C4'—C3'—H3'2	111.4
O2—S—C10	106.45 (14)	H3'1—C3'—H3'2	109.3
O3—S—C10	104.01 (10)	C5'—C4'—C3'	106.2 (3)
O1—S—C10	108.28 (14)	C5'—C4'—C7'	103.4 (2)
C10-C1-C2	108.9 (2)	C3'—C4'—C7'	102.0 (2)
C10—C1—C7	124.3 (2)	C5'—C4'—H4'	114.6
C2—C1—C7	100.9 (2)	C3'—C4'—H4'	114.6
C10—C1—C6	116.2 (2)	C7'—C4'—H4'	114.6
C2—C1—C6	101.7 (2)	C4'—C5'—C6'	103.34 (19)
C7—C1—C6	101.77 (19)	C4'—C5'—H5'1	111.1
O4—C2—C3	126.6 (3)	C6'—C5'—H5'1	111.1
O4—C2—C1	125.9 (2)	C4'—C5'—H5'2	111.1
C3—C2—C1	107.5 (2)	C6'—C5'—H5'2	111.1
C2—C3—C4	101.3 (2)	H5'1—C5'—H5'2	109.1
С2—С3—НЗА	111.5	C5'—C6'—C1'	104.2 (2)
C4—C3—H3A	111.5	C5'—C6'—H6'1	110.9
С2—С3—Н3В	111.5	C1'—C6'—H6'1	110.9
С4—С3—Н3В	111.5	C5'—C6'—H6'2	110.9

НЗА—СЗ—НЗВ	109.3	С1'—С6'—Н6'2	110.9
C3—C4—C5	106.0 (2)	H6'1—C6'—H6'2	108.9
C3—C4—C7	103.7 (2)	C8'—C7'—C9'	107.8 (2)
C5—C4—C7	102.5 (2)	C8'—C7'—C4'	112.8 (2)
C3—C4—H4	114.4	C9'—C7'—C4'	112.9 (2)
C5—C4—H4	114.4	C8'—C7'—C1'	113.9 (2)
C7—C4—H4	114.4	C9'—C7'—C1'	114.9 (2)
C4—C5—C6	102.9 (2)	C4'—C7'—C1'	94.2 (2)
C4—C5—H5A	111.2	C7'—C8'—H8'1	109.5
С6—С5—Н5А	111.2	C7'—C8'—H8'2	109.5
С4—С5—Н5В	111.2	H8'1—C8'—H8'2	109.5
С6—С5—Н5В	111.2	С7'—С8'—Н8'3	109.5
H5A—C5—H5B	109.1	H8'1—C8'—H8'3	109.5
C5—C6—C1	103.9 (2)	H8'2—C8'—H8'3	109.5
С5—С6—Н6А	111.0	С7'—С9'—Н9'1	109.5
С1—С6—Н6А	111.0	С7'—С9'—Н9'2	109.5
С5—С6—Н6В	111.0	Н9'1—С9'—Н9'2	109.5
С1—С6—Н6В	111.0	С7'—С9'—Н9'3	109.5
H6A—C6—H6B	109.0	Н9'1—С9'—Н9'3	109.5
С9—С7—С8	108.6 (2)	Н9'2—С9'—Н9'3	109.5
C9—C7—C4	111.3 (2)	C1'—C10'—S'	118.91 (14)
C8—C7—C4	113.8 (3)	C1'—C10'—H11C	107.6
С9—С7—С1	116.9 (2)	S'—C10'—H11C	107.6
C8—C7—C1	111.8 (2)	C1'—C10'—H11D	107.6
C4—C7—C1	93.85 (19)	S'—C10'—H11D	107.6
С7—С8—Н8А	109.5	H11C—C10'—H11D	107.0
С7—С8—Н8В	109.5		
C10—C1—C2—O4	15.3 (4)	C10'—C1'—C2'—O4'	18.1 (5)
C7—C1—C2—O4	147.5 (3)	C6'—C1'—C2'—O4'	-111.2 (3)
C6—C1—C2—O4	-107.9 (3)	C7'—C1'—C2'—O4'	144.0 (3)
C10—C1—C2—C3	-164.9 (2)	C10'-C1'-C2'-C3'	-160.6 (3)
C7—C1—C2—C3	-32.7 (3)	C6'—C1'—C2'—C3'	70.2 (3)
C6—C1—C2—C3	71.9 (2)	C7'—C1'—C2'—C3'	-34.7 (3)
O4—C2—C3—C4	178.5 (3)	O4'—C2'—C3'—C4'	-178.8 (3)
C1—C2—C3—C4	-1.3 (3)	C1'—C2'—C3'—C4'	-0.2 (3)
C2—C3—C4—C5	-72.1 (3)	C2'—C3'—C4'—C5'	-72.4 (3)
C2—C3—C4—C7	35.4 (3)	C2'—C3'—C4'—C7'	35.5 (3)
C3—C4—C5—C6	71.2 (2)	C3'—C4'—C5'—C6'	70.7 (3)
C7—C4—C5—C6	-37.2 (2)	C7'—C4'—C5'—C6'	-36.3 (3)
C4—C5—C6—C1	2.5 (2)	C4'—C5'—C6'—C1'	2.4 (3)
C10-C1-C6-C5	170.7 (2)	C10'—C1'—C6'—C5'	165.4 (3)
C2—C1—C6—C5	-71.2 (2)	C2'—C1'—C6'—C5'	-71.2 (3)
C7—C1—C6—C5	32.7 (2)	C7'—C1'—C6'—C5'	31.7 (3)
C3—C4—C7—C9	-175.0 (2)	C5'—C4'—C7'—C8'	172.5 (3)
C5—C4—C7—C9	-64.9 (3)	C3'—C4'—C7'—C8'	62.3 (3)
C3—C4—C7—C8	61.9 (3)	C5'—C4'—C7'—C9'	-64.9 (3)
C5—C4—C7—C8	172.0 (2)	C3'—C4'—C7'—C9'	-175.1 (2)
C3—C4—C7—C1	-54.1 (3)	C5'—C4'—C7'—C1'	54.3 (2)
C5—C4—C7—C1	56.1 (2)	C3'—C4'—C7'—C1'	-55.8 (2)

-70.6 (4)	C10'—C1'—C7'—C8'	57.0 (3)
167.4 (2)	C2'—C1'—C7'—C8'	-63.2 (3)
62.8 (3)	C6'—C1'—C7'—C8'	-168.8 (2)
55.5 (3)	C10'—C1'—C7'—C9'	-68.1 (3)
-66.5 (3)	C2'—C1'—C7'—C9'	171.7 (2)
-171.1 (2)	C6'-C1'-C7'-C9'	66.1 (3)
173.1 (3)	C10'—C1'—C7'—C4'	174.2 (2)
51.1 (3)	C2'—C1'—C7'—C4'	54.0 (2)
-53.5 (2)	C6'C1'C4'	-51.5 (2)
174.2 (2)	C2'—C1'—C10'—S'	-142.1 (3)
55.8 (4)	C6'—C1'—C10'—S'	-22.6 (5)
-71.7 (3)	C7'—C1'—C10'—S'	103.6 (3)
-75.9 (3)	O2'—S'—C10'—C1'	-58.0 (3)
165.0 (3)	O3'—S'—C10'—C1'	-178.7 (3)
44.9 (3)	O1'—S'—C10'—C1'	62.1 (3)
	-70.6 (4) 167.4 (2) 62.8 (3) 55.5 (3) -66.5 (3) -171.1 (2) 173.1 (3) 51.1 (3) -53.5 (2) 174.2 (2) 55.8 (4) -71.7 (3) -75.9 (3) 165.0 (3) 44.9 (3)	-70.6 (4) $C10'-C1'-C7'-C8'$ $167.4 (2)$ $C2'-C1'-C7'-C8'$ $62.8 (3)$ $C6'-C1'-C7'-C8'$ $55.5 (3)$ $C10'-C1'-C7'-C9'$ $-66.5 (3)$ $C2'-C1'-C7'-C9'$ $-171.1 (2)$ $C6'-C1'-C7'-C4'$ $51.1 (3)$ $C10'-C1'-C7'-C4'$ $55.8 (2)$ $C6'-C1'-C7'-C4'$ $174.2 (2)$ $C2'-C1'-C10'-S'$ $55.8 (4)$ $C6'-C1'-C10'-S'$ $-71.7 (3)$ $C7'-C1'-C10'-S'$ $-75.9 (3)$ $O2'-S'-C10'-C1'$ $165.0 (3)$ $O3'-S'-C10'-C1'$

